What is Reliability Block Diagram Analysis (RBD Analysis)?

A Reliability Block Diagram (RBD) is a graphical representation of the components of the system and how they are reliability-wise related. The diagram represents the functioning state (i.e., success or failure) of the system in terms of the functioning states of its components. For example, a simple series configuration indicates that all of the components must operate for the system to operate, a simple parallel configuration indicates that at least one of the components must operate, and so on. When you define the reliability characteristics of each component, you can use software to calculate the reliability function for the entire system and obtain a wide variety of system reliability analysis results, including the ability to identify critical components and calculate the optimum reliability allocation strategy to meet a system reliability goal. Likewise, when you also define the maintainability characteristics of the components in the RBD, you can use software to simulate the operation of the system and obtain an array of system maintainability and availability results that will help you to make decisions about the design and/or operation of the system.

Reliability Block Diagram Analysis Software from ReliaSoft

ReliaSoft Corporation provides a complete array of software tools for reliability modeling and analysis. This includes the BlockSim software for system analysis using a Reliability Block Diagram (RBD) or Fault Tree Analysis (FTA) approach.

Software Features

BlockSim supports an extensive array of reliability block diagram (RBD) configurations and fault tree analysis (FTA) gates and events, including advanced capabilities to model complex configurations, load sharing, standby redundancy, phases and duty cycles. Using exact computations and/or discrete event simulation, BlockSim facilitates a wide variety of analyses for both repairable and non-repairable systems. This includes:

Product Info in Multiple Languages

Upcoming Reliability Block Diagram Analysis Training Seminars

Upcoming Seminars:

Weibull++ Reliability Life Data Analysis ALTA Accelerated Life Testing Data Analysis DOE++ Experiment Design and Analysis RGA Reliability Growth and Repairable System Analysis BlockSim System Reliability and Maintainability Analysis RENO for Risk Analysis via Discrete Event Simulation Lambda Predict Reliability Prediction Xfmea FMEA and FMECA RCM++ Reliability Centered Maintenance MPC MSG-3 Maintenance Program Creation XFRACAS Web-based FRACAS Orion eAPI Web-based Asset Management ALTA Accelerated Life Testing Data Analysis BlockSim System Reliability and Maintainability Analysis DOE++ Experiment Design and Analysis MPC MSG-3 Maintenance Program Creation Lambda Predict Reliability Prediction RCM++ Reliability Centered Maintenance RENO for Risk Analysis via Discrete Event Simulation RGA Reliability Growth and Repairable System Analysis Weibull++ Reliability Life Data Analysis Xfmea FMEA and FMECA XFRACAS Web-based FRACAS Orion eAPI Web-based Asset Management ALTA Accelerated Life Testing Data Analysis BlockSim System Reliability and Maintainability Analysis DOE++ Experiment Design and Analysis MPC MSG-3 Maintenance Program Creation Lambda Predict Reliability Prediction RCM++ Reliability Centered Maintenance RENO for Risk Analysis via Discrete Event Simulation RGA Reliability Growth and Repairable System Analysis Weibull++ Reliability Life Data Analysis Xfmea FMEA and FMECA XFRACAS Web-based FRACAS Orion eAPI Web-based Asset Management    ReliaSoft.com Footer

Copyright © 1992 - ReliaSoft Corporation. All Rights Reserved.
Privacy Statement | Terms of Use | Site Map | Contact | About Us

Like ReliaSoft on Facebook  Follow ReliaSoft on Twitter  Connect with ReliaSoft on LinkedIn  Follow ReliaSoft on Google+  Watch ReliaSoft videos on YouTube