Complete Array of Tools for Related Analyses

Enhanced in Version 10!

Degradation Data Analysis

The Weibull++ degradation analysis folio allows you to extrapolate the expected failure times of a product based on measurements that reflect how some performance measure (e.g., increase in crack propagation, decrease in tread depth, increase in vibration, etc.) has degraded for sample units over a period of time. The software offers a choice of the Linear, Exponential, Power, Logarithmic, Gompertz or Lloyd-Lipow models to analyze the degradation data, and generates Degradation vs. Time plots on either a linear or logarithmic scale.

Now in Version 10, you can create your own user-defined degradation models. We've also added a new destructive degradation folio for situations in which some or all of the units under test are measured only once (e.g., if the test destroys the unit).
 

Warranty Data Analysis

Weibull++'s popular warranty analysis folio converts warranty claims data (sales and returns) that are readily available in many organizations into failure/suspension data sets that can be analyzed with traditional life data analysis methods. You can use this analysis to better understand the failure behavior of products in the field and to generate forecasts of future returns that will be covered under warranty. The software provides a choice of data entry formats to fit your particular needs: Nevada Chart, Times-to-Failure, Dates of Failure or Usage. The folio provides all of the special options you need to analyze the data in a way that’s appropriate for the available data and your organization’s warranty fulfillment practices. For example:

Non-Parametric Life Data Analysis

The non-parametric LDA folio offers a choice of three methods for analyzing life data without assuming an underlying life distribution: Kaplan-Meier, Simple Actuarial and Standard Actuarial. This folio may be useful when dealing with unknown failure modes, when there is not enough data to assume a life distribution or when the data set does not fit any life distribution in a satisfactory way. Now Weibull++ also performs a parametric analysis directly within the same folio using the unreliability estimates that are generated by the non-parametric analysis.

Target Reliability Estimator Based on Costs vs. Benefits

Choosing an optimal reliability goal involves deciding on important trade-offs. For example, higher reliability typically requires higher production costs, but higher reliability will typically also lead to lower warranty costs and higher market share. The new Target Reliability tool generates multiple plots that will help you select a target reliability that will minimize cost, maximize profit and maximize the return on an investment that affects reliability.

Reliability Test Design

Weibull++ now offers a new Test Design Assistant that helps you select which reliability test design tool(s) will meet your specific needs. This includes one new method for demonstration test design (Non-Parametric Bayesian) and two new tools that help to visualize the outcomes from planned tests.

Weibull++ Reliability Life Data Analysis ALTA Accelerated Life Testing Data Analysis DOE++ Experiment Design and Analysis RGA Reliability Growth and Repairable System Analysis BlockSim System Reliability and Maintainability Analysis RENO for Risk Analysis via Discrete Event Simulation Lambda Predict Reliability Prediction Xfmea FMEA and FMECA RCM++ Reliability Centered Maintenance MPC MSG-3 Maintenance Program Creation XFRACAS Web-based FRACAS Orion eAPI Web-based Asset Management ALTA Accelerated Life Testing Data Analysis BlockSim System Reliability and Maintainability Analysis DOE++ Experiment Design and Analysis MPC MSG-3 Maintenance Program Creation Lambda Predict Reliability Prediction RCM++ Reliability Centered Maintenance RENO for Risk Analysis via Discrete Event Simulation RGA Reliability Growth and Repairable System Analysis Weibull++ Reliability Life Data Analysis Xfmea FMEA and FMECA XFRACAS Web-based FRACAS Orion eAPI Web-based Asset Management ALTA Accelerated Life Testing Data Analysis BlockSim System Reliability and Maintainability Analysis DOE++ Experiment Design and Analysis MPC MSG-3 Maintenance Program Creation Lambda Predict Reliability Prediction RCM++ Reliability Centered Maintenance RENO for Risk Analysis via Discrete Event Simulation RGA Reliability Growth and Repairable System Analysis Weibull++ Reliability Life Data Analysis Xfmea FMEA and FMECA XFRACAS Web-based FRACAS Orion eAPI Web-based Asset Management    ReliaSoft.com Footer

Copyright © 1992 - ReliaSoft Corporation. All Rights Reserved.
Privacy Statement | Terms of Use | Site Map | Contact | About Us

Like ReliaSoft on Facebook  Follow ReliaSoft on Twitter  Connect with ReliaSoft on LinkedIn  Follow ReliaSoft on Google+  Watch ReliaSoft videos on YouTube