Analyzing Accelerated Test Data with TimeDependent Test and Use Stress Profiles Accelerated testing is becoming more widely used in order to obtain life data in a relatively short amount of time. The use of sophisticated tools such as ReliaSoft’s ALTA 6 PRO software allows the reliability engineer to design and analyze tests that would have been impossible to do a few years ago. This is particularly true if the test or use stress varies with time. ALTA 6 PRO is the only software package capable of using the cumulative damage model for such analyses. In this article, we will look at an analysis in which the test and the use stress levels have different timedependent profiles. Test
Procedure with TimeDependent Stress Profiles The stimulus that has the greatest effect on the life of the tanks is pressure, measured in pounds per square inch (psi). In order to perform an accelerated life test on these tanks, groups of tanks were put on a pressure cycling test. This test involves putting the tanks on a test fixture, pressurizing them to 5.5 psi and then rapidly increasing the pressure to either 15 psi or 21 psi. The tanks are held at the elevated pressure for an amount of time and then rapidly decreased to the original pressure. For each pressure cycle, the tank spends 80% of the time at the elevated pressure and 20% of the time at the “default” pressure of 5.5 psi. Since the cycle repeats every 10 hours, each cycle can be thought of as a square wave. Thus, for each cycle, the tank is held at 5.5 psi for 1 hour (onetenth of the cycle), the pressure is rapidly increased to either 15 psi or 21 psi and held for 8 hours (eighttenths of the cycle), then the pressure is rapidly reduced to 5.5 psi and held for an additional hour. The test fixture is capable of increasing and decreasing the pressure of the test units in a rapid fashion, so much so that the transitions between the pressure levels can be considered simultaneous for the purposes of this test. The stress profile for the 15 psi pressure cycling test is shown in Figure 1. The stress profile for the 21 psi test can be similarly constructed.
The test was conducted with two groups of test units: 22 units were tested with the 15 psi profile and 10 units were tested with the 21 psi profile. All of the units were tested to failure. That is, the stress profile was repeated until all of the units on test had failed. The failure data set is contained in the following table:
As can be seen from the data, the range of failure times for the 15 psi pressure cycling test (2241 – 12774 hrs) is larger than the range for the 21 psi test (1175 – 7551 hrs), indicating an inverse relationship between life and stress. However, the data set will need to be formally analyzed to see if this conjecture is correct. Analysis
with ALTA 6 PRO The parameter estimates resulting from this analysis are:
= 2.3773 where is the Weibull slope or shape parameter, and a and n are parameters of the lifestress relationship model. The fact that n is positive confirms the hypothesis that life is inversely proportional to stress. This is illustrated by Figure 2, which displays the life vs. stress plot for the analysis. The negative slope of the lines in the graph indicates that life decreases as pressure increases.
TimeDependent Use Stress Profile In order to develop the use stress profile, it is necessary to incorporate information regarding the actual usage of the heat exchanger tanks in the field. For this particular automotive application, the pressure in the tank is directly proportional to the engine RPM. Fortunately, the manufacturer has plenty of information regarding the amount of time the engines are expected to spend at various engine speed levels, which was obtained from numerous customer usage profiling programs. Based on this information, the engineers are able to develop a simplified pressure profile that represents the stress that a 98th percentile customer would inflict on a tank. That is, 98% of the drivers would operate their vehicles in such a way that the stress on the heat exchanger tank would be equal to or less than that represented by the stress profile. Simply put, the stress profile indicates that the tank will experience a pressure of 6 psi for 66.7% of its life, 11 psi for 25% of its life and 14 psi for 8.3% of its life. For our 2,000 hour period of interest, this means that the tank will see 1,333 hours at 6 psi, 500 hours at 11 psi, and 167 hours at 14 psi. There is no distinction, however, regarding when each tank will see these particular stresses in relation to its lifespan, and it is assumed that the different stress levels are evenly distributed over the life of the product. The question then arises of how to construct the use stress profile to reflect the usage the tanks will see in the field. One option is to begin with the lowest stress, stepping up the stress at the appropriate times like a typical stepstress test profile. Alternatively, one could construct the use stress profile with the higher, more damaging stress first and step down to the lower stress levels. As another option, one could split the difference between these options and construct the profile so that the highest stress is in the middle of the profile, similar to the pressure cycles that were used for the test stress profiles. The plots in Figure 3 illustrate these three possible use stress profile concepts.
Reliability Calculations
Note that from zero to 667 hours, the reliability plots for the “step down” and “center cycle” profiles are identical, as they are operating at the same stress level and accumulating the same amount of damage. Similarly, the reliability plots for the “center cycle” and “step down” profiles are identical from 1,333 to 2,000 hours. This is because these profiles have accumulated the same amount of damage at 1,333 hours and continue to operate at the same stress level for the rest of the analysis life. If we were to extend the analysis past 2,000 hours by repeating or cycling the stress profiles, we would see that the reliability plots will always intersect at multiples of 2,000 hours. We can now address the issue of the reliability requirement. Using ALTA’s QCP to calculate the reliability, as shown in Figure 5, the 90% lower, onesided reliability is 91.02%. This exceeds the requirement of 90% and the design can be released to production.
