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SUMMARY & CONCLUSIONS 

Accelerated life testing (ALT) is widely used to expedite 
failures of a product in a short time period for predicting the 
product’s reliability under normal operating conditions. The 
resulting ALT data are often characterized by a probability 
distribution, such as Weibull, Lognormal, Gamma 
distribution, along with a life-stress relationship. However, if 
the selected failure time distribution is not adequate in 
describing the ALT data, the resulting reliability prediction 
would be misleading. This paper proposes a generic method 
that assists engineers in modeling ALT data. The method uses 
Erlang-Coxian (EC) distributions, which belong to a particular 
subset of phase-type (PH) distributions, to approximate the 
underlying failure time distributions arbitrarily closely. To 
estimate the parameters of such an EC-based ALT model, two 
statistical inference approaches are proposed. First, the 
moment-matching approach (method of moments) is 
developed to simultaneously match the moments of the EC-
based ALT model to the ALT data collected at all test stress 
levels. In addition, the maximum likelihood estimation (MLE) 
approach is proposed to handle ALT data with type-I 
censoring. A numerical example is provided to illustrate the 
capability of the generic method in modeling ALT data. 

1 INTRODUCTION 

As technology advances, new products can be made quite 
reliable with high-performance materials and advanced system 
structures through efficient design tools. As a result, it is 
difficult, if not impossible, to observe failures of such a 
product in a short time period under its normal operating 
conditions for reliability estimation. To cope with today’s fast 
paced technology innovation, accelerated life testing (ALT) 
has been widely used as a viable tool for estimating the long-
term reliability of a new product. The basic idea of ALT is to 
expose some units of the product to harsher-than-normal 
operating conditions to expedite failures. Based on the 
resulting failure time data due to acceleration, a statistical 
model is developed and used to extrapolate the product’s long-
term reliability under the normal operating conditions.  

Non-parametric methods are practical choices for 
predicting the reliability of a product without the need of 
knowing the underlying failure time distribution. The most 
popular ones include the Kaplan-Meier estimator and Breslow 
estimator [1]. However, it is difficult to extend such methods 

to develop ALT models which require the inclusion of various 
life-stress relationships (distribution parameters as functions 
of a set of stresses, or called covariates) in order to perform 
extrapolation with respect to both time and stresses. Because 
of this, the most popular methods in modeling ALT data are to 
develop a parametric model in the form of a probability 
distribution with a set of stress-dependent parameters. Such 
methods, if properly applied, are relatively efficient in terms 
of statistical inference, and the related inference procedures, 
such as maximum likelihood estimation (MLE) and least 
squares estimation (LSE), have been extensively studied and 
made available to practitioners [1]-[4].  

Regarding the use of parametric ALT models in practice, 
practitioners often face the challenge of developing or 
selecting a parametric ALT model that provides an adequate 
fit to the collected data. Technically, several probability 
distributions may be considered as candidates, some of which 
may offer comparably good fits for the same data, e.g., see 
[5]-[7]. To determine the best model, the likelihood values or 
residual plots (e.g., Cox-Snell residuals) of these models can 
be considered. For relevant goodness-of-fit tests of ALT 
models, readers are referred to [8]. Indeed, several methods 
have been proposed to help practitioners overcome model 
selection problems to some extent. For example, Elsayed et al. 
[9] proposed the extended linear hazard regression model that 
is capable of modeling various ALT data and includes many 
ALT models as special cases. Moreover, Yu and Chang [10] 
proposed a Bayesian model-averaging approach to estimating 
life time quantiles in ALT by combining the lognormal and 
Weibull log-location-scale regression models. However, all 
these methods require extensive experience in modeling ALT 
and statistical inference. To assist engineers in implementing 
ALT, a generic method for modeling ALT data using a more 
versatile distribution would be desirable for a wide range of 
engineering applications. 

Phase-type (PH) distributions are a collection of 
stochastic models that represent the time to absorption of a 
continuous-time Markov chain (CTMC) defined on a finite-
state space [11]. Figure 1 shows two examples, where the time 
until absorption to the respective absorbing state in each 
CTMC can be characterized by a PH distribution. Essentially, 
such a finite-state CTMC with the specific structure can be 
described by an infinitesimal generator matrix: 

ۿ ൌ ቂ 0 
ࡿ  ቃ,                                          (1)ࡿ
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where ࡿ is the subgenerator matrix consisting of the transition 
rates among transient states and the ones for transitions into 
the absorbing state(s), ࡿ ൌ െࡿ and  ൌ ሺ1,1, … ,1ሻᇱ. 

 

 
(a) CTMC for a 3-phase Erlang distribution 

 

 
(b) CTMC for a 3-phase Coxian distribution 

Figure 1 - CTMCs Whose Absorption Times Define the 
Specific Phase-type Distributions 

 

Let T be the time to absorption of a k-phase CTMC and 
ૈ ൌ ሺπଵ, πଶ, … , π୩ሻ be the initial distribution of the CTMC. 
The cumulative distribution function (cdf) of T is: 

ሻݐሺܨ ൌ 1 െ ૈ expሼ܁ݐሽ,                             (2) 
where expሼ܁ݐሽ is matrix exponential defined as: 

expሼ܁ݐሽ ൌ ∑ ଵ
୩!

ஶ
୩ୀ ሺ܁ݐሻ୩.                            (3) 

The probability density function (pdf) of T  is given by: 
݂ሺݐሻ ൌ ૈ expሼ܁ݐሽ ܁,                               (4) 

and the hazard function can be expressed as: 
݄ሺݐሻ ൌ ૈexp ሼ܁ݐሽ܁/ሺૈ exp ሼ܁ݐሽሻ , t  0.         (5) 

In addition, the lth moment of the distribution is given by:  
Eሾܶሿ ൌ ሺെ1ሻ୪݈!  ୪.                               (6)ି܁ૈ

For examples, the CTMC in Figure 1(a) results in a three-
phase Erlang distribution Eሺ3, λሻ with:  

ૈ ൌ ሺ1,0,0ሻ and ܁ ൌ 
െλ
0
0

λ
െλ
0

0
λ
െλ
൩, 

and the one in Figure 1(b) gives a three-phase Coxian 
distribution Cሺλଵ, λଶ, λଷ, pଵ, pଶሻ with:  

ૈ ൌ ሺ1,0,0ሻ and ܁ ൌ 
െλଵ
0
0

   pଵλଵ
െλଶ
0

0
   pଶλଶ
െλଷ

൩, 

where 0 ൏   1, ݅ ൌ 1,2.  
One of the most attractive properties of PH distributions 

is that the set of PH distributions is dense in the set of 
nonnegative distributions [12]. In other words, in theory, any 
nonnegative distribution can be approximated arbitrarily 
closely by a PH distribution. The only limitation of PH 
distributions is that they are light-tailed, thus may not be used 
as effective models for heavy-tailed distributions. Among 
different subsets of PH distributions, Erlang distributions and 
Coxian distributions are probably the two most popular ones. 
They have been extensively studied as part of queueing theory 
and widely used in healthcare such as survival data analysis 
and modeling the length of stay of patients in hospital [13,14]. 

Motivated by the versatility of PH distributions that 
naturally meets the broad requirements for parametric 

modeling of failure time data, we propose a generic method 
using a specific and yet flexible subset of PH distributions, 
called Erlang-Coxian (EC) distributions [15], to model ALT 
data. Both moment-matching and MLE approaches are studied 
for statistical inference. This generic method contributes to the 
body of ALT literature in two ways. First, the use of EC 
distributions relaxes strong assumptions about the underlying 
failure time distributions in developing parametric ALT 
models. Moreover, for a specific set of ALT data, it is quite 
straightforward to adaptively adjust the number of phases of 
the associated CTMC to achieve the best fit based on 
statistical inference results. 

2 DEVELOPMENT OF EC-BASED ALT MODEL 

2.1 Basics of EC Distributions 

Before we proceed with the proposed EC-based ALT 
model, we first introduce the following definitions [15]. 

Definition 1. Let ܧሾܺሿ be the lth moment of random variable 
X with distribution G. The normalized lth moment ݉

ீ of X for 
l = 2,3 is defined as: ݉ଶ

ீ ൌ ாሾమሿ
ሺாሾሿሻమ

 and ݉ଷ
ீ ൌ ாሾయሿ

ாሾሿாሾమሿ
. 

Definition 2. A distribution G is well represented by a 
distribution F if F and G agree on their first three moments. 
PH3 refers to the set of distributions that are well represented 
by a PH distribution. 

It is known that a distribution G is in PH3 if and only if its 
normalized moments satisfy ݉ଷ

ீ  ݉ଶ
ீ  1 [16]. Since any 

nonnegative distribution G satisfies ݉ଷ
ீ  ݉ଶ

ீ  1 [17], 
almost all the nonnegative distributions are in PH3. Osogami 
and Harchol-Balter [15] introduced the EC distributions, 
which are quite efficient for approximating PH3 distributions. 
Figure 2 shows the CTMC for a k-phase EC distribution 
(݇  3), which consists of an Erlang with k-2 phases: ܧሺ݇ െ
2, ,ଶߣሺܥ :ଵሻ and a two-phase Coxianߣ ,ଷߣ   :ሻ, for which
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and  ૈ ൌ ሺ1,0, … ,0ᇣᇧᇤᇧᇥ
 ௧௦

ሻ . 

 

 
Figure 2 - CTMC for a k-phase EC Distribution 
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The idea of creating an EC distribution is that a two-phase 
Coxian distribution can well represent any distribution that has 
high second and third moments while an Erlang distribution 
has only two free parameters and has the least normalized 
second moment among all the PH distributions with a fixed 
number of phases. Therefore, such a k-phase EC distribution 
can represent probability distributions with all ranges of 
variability using only a small number of phases. This is 
important in developing a PH-based ALT model, which needs 
additional parameters for the life-stress relationship. 

2.2 Formulation of EC-based ALT Model 

Accelerated failure time (AFT) models are probably the most 
widely used parametric ALT models. Unlike a proportional 
hazards model, an AFT model assumes that the effect of a 
covariate is to multiply the failure time, instead of the hazard 
function, by some constant [9]. Mathematically, an AFT 
model for the cdf ܨሺݐ; ܼሻ of failure time under a constant 
stress Z can be expressed as [8]: 

;ݐሺܨ ܼሻ ൌ ;ሺܼݎሺܨ  ሻ,                                 (8)ݐሻߠ
where ܨሺ·ሻ is the baseline cdf and ݎሺܼ;  ሻ is a deterministicߠ
function of Z. Equivalently, this model can be expressed in 
terms of the corresponding hazard rate: 

݄ሺݐ; ܼሻ ൌ ݄ሺݎሺܼ; ;ሺܼݎሻݐሻߠ  ሻ,                      (9)ߠ
where ݄ሺ·ሻ is the corresponding baseline hazard rate. An 
important aspect of implementing an AFT model is to assume 
the underlying failure time distribution, i.e., ܨሺ·ሻ. 

Following Eqs. (2) and (8), the EC-based AFT model for 
a product’s failure time under stress level Z is given by:  

;ݐሺܨ ܼሻ ൌ ;൫ܼݎ൫ܨ ൯ݐ൯ߠ ൌ 1 െ ૈ exp൛ݎ൫ܼ;  ൟ,    (10)ࡿݐ൯ߠ
where ૈ and ࡿ are given in Eq. (9). The corresponding pdf is: 

݂ሺݐ; ܼሻ ൌ ;൫ܼݎ ;൫ܼݎ൯ૈ exp൛ߠ  ,         (11)ࡿ ൟࡿݐ൯ߠ
and the hazard function is: 

݄ሺݐ; ܼሻ ൌ ;൫ܼݎ ൯ૈߠ exp ሼݎ൫ܼ; /ࡿሽࡿݐ൯ߠ
ሺૈ exp ሼݎ൫ܼ;  ሽሻ.   (12)ࡿݐ൯ߠ

The corresponding lth moments can be expressed as: 
ሾܧ ܶ

ሿ ൌ ሺെ1ሻ൫ݎሺܼ; !ሻ൯ି݈ߠ  ,                 (13)ିࡿૈ

3 STATISTICAL INFERENCE 

This section addresses two statistical methods for 
estimating the parameters of an EC-based ALT model. 

3.1 Moment-Matching (Method of Moments) 

For complete ALT data, the lth sample moment of failure 

times ݐ at stress level ܼ can be obtained as: 
1
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mathematical formulation for determining the matching EC-
based AFT model with the least number of phases (i.e., k) can 
be expressed as:  
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where ,i lε  are the pre-specified levels of tolerance for each 
stress level ܼ. Note that the size of matrix ࡿ increases as the 
value of k increases, which only increases the number phases 
in Erlang E(k-2, λ1). The limitation of this approach is that 
extensive computational effort must be taken to find the 
solution that satisfies those nonlinear constraints, which may 
not be an easy task.  

3.2 MLE method 

We now consider a more complex case of constant-stress 
ALT experiment with Type-I censoring. Again, let ݐ be the 
recorded failure/censoring time of unit j tested under stress 
level ܼ, ݅ ൌ 1,2, …  and ݊ be the total number of units ,ܯ,
tested under ܼ. 

The MLE method is widely used, which can handle 
different types of censored data quite efficiently. For ALT 
data with type-I censoring, the log-likelihood function ݈݊ܮ can 
be expressed as: 
,൫݇ܮ݈݊      ,ଵߣ ,ଶߣ ,ଷߣ , ൯ߠ ൌ ∑ ∑ ሾδlog൫݂ሺݐ; ܼሻ൯


ୀଵ

ெ
ୀଵ       

ሺ1 െ δሻlog൫1 െ ;ݐሺܨ ܼሻ൯ሿ 

ൌδlog൫ݎ൫ܼ; ;൫ܼݎ൯ૈ exp൛ߠ ൯ࡿ ൟࡿݐ൯ߠ


ୀଵ



ୀଵ

 

 ሺ1 െ δሻlog൫ૈ exp൛ݎ൫ܼ;  ൟ൯.                 (15)ࡿݐ൯ߠ
where δ ൌ ሼ1, if ݐ is a failure time; 0, otherwiseሽ. The 
MLEs of the model parameters can be obtained by 
maximizing the log-likelihood function. In practice, different 
optimization algorithms, such as Quasi-Newton and Nelder-
Mead algorithms, can be used. 

3.3 Determination of The Number of Phases (Value of k)  

A practical issue in developing an EC-based ALT model 
based on likelihood is to determine the number of phases, i.e., 
the value of k. For such model selection problems, the Akaike 
information criterion (AIC) can be utilized, which is expressed 
as: 

ܥܫܣ          ൌ ݍ2 െ ,ሺ݇ܮ2݈݊ ,ଵߣ ,ଶߣ ,ଷߣ ,  ሻ,                  (16)ߠ
where ݍ is the number of parameters, which is the same for 
EC-based ALT models when the number of parameters in ߠ is 



fixed. As a result, it is straightforward to compare the 
likelihood values when comparing candidate EC-based ALT 
models with different numbers of phases in order to determine 
the best one. 

Note that the likelihood-ratio test has been widely used to 
test against nested models, which may not be appropriate for 
determining the number of phases in the EC-based ALT 
model.  

4 NUMERICAL EXAMPLE 

The ALT data reported by Liao and Elsayed [18] is used 
to illustrate the use of the proposed method in practice. 

4.1 Experiment 

The purpose of this ALT experiment is to estimate the 
reliability of a type of miniature lamps under the use 
condition: 2 volts. The highest operating voltage of the lamp is 
5 volts. It is well known that the coil temperature of an 
incandescent lamp during operation is mainly due to the 
electric current. Three constant voltage levels were utilized in 
the experiment: 5 volts, 3.5 volts, and 2 volts. Table 1 gives 
the observed failure times and censoring times under the three 
stress levels. 

  

Stress level Failure times 
(“+”: the unit is censored) 

5 volts 

20.5 22.3 23.2 24.7 26 
34.1       39.6 41.8 43.6 44.9 
47.7       61.6        62.1 65.5 70.8 
87.8 118.3 120.1     145.4 157.4 
180.9 187.7     204 206.7     213.9 
215.2 218.7 254.1 262.6 293 
304 313.7 314.1     317.9 337.7 
430.2 

3.5 volts 

37.8 43.6 51.1 58.6 65.5 
65.9       75.6 82.5 88.1 89 
106.6   113.1       121.1 121.5 128.3 
151.8 171.7     181        202.7 211.7 
230.7 249.9     275.6 285        296.2 
358.5 379.8 434.5 493.1 506.4 
561.1 570 577.7     876.3 922 
890+      890+ 890+ 941+ 941+ 

2 volts 

223.1  254  316.7  560.2 679 
737         894.4  930.5+  930.5+ 
930.5+  930.5+   930.5+   930.5+  
930.5+    930.5+  930.5+ 930.5+  
930.5+    930.5+  930.5+  930.5+  
930.5+    930.5+   930.5+ 

Table 1 - ALT Data of Miniature Lamps 

Figure 3 shows the empirical cdf (Kaplan-Meier) of the 
lamp under each different voltage level. To avoid making an 
assumption on the underlying distribution, such as Weibull 
and Lognormal, we use the proposed EC-based ALT model to 
predict the reliability of this type of miniature lamps.  

4.2 EC-based ALT Model and Estimation Results 

To facilitate data analysis, we standardize the stress levels 
by defining ܼ ൌ ሾ ܸ െ ܸሿ/ሾ ுܸ െ ܸሿ, where ܸ ൌ 2 volts and 
ுܸ ൌ 5 volts. As a result, we have: ܼଵ ൌ 1, ܼଶ ൌ 0.5, and 
ܼଷ ൌ 0. The life-stress relationship is assumed to be 
characterized by: 

;൫ܼݎ ൯ߠ ൌ exp ሺߙܼ
ఈభሻ.                             (17) 

Because the data set contains censoring times, we use the 
MLE method introduced in section 3.2 for statistical inference. 
Table 2 shows the MLEs of model parameters for different 
EC-based ALT models with different numbers of phases. By 
comparing the log-likelihood values, the EC-based ALT 
model with k = 5 phases is selected after balancing the 
prediction accuracy and the complexity of the models. 

 
Figure 3 - Empirical cdf’s of the Failure Times  

under Different Voltage Levels 
 

Values of k MLEs of 
parameters 

Log-likelihood 
ܮ݈݊

3: E(1, λ1)      
& C(λ2, λ3, pc) 

ߙ ൌ 2.9091;  
ଵߙ ൌ 0.5762; 
ଵߣ ൌ 0.0026; 
ଶߣ ൌ 0.0026; 
ଷߣ ൌ 0.0003; 
 ൌ 0.6730; 

-518.5038 

4: E(2, λ1)      
& C(λ2, λ3, pc) 

ߙ ൌ 2.8807;  
ଵߙ ൌ 0.5730; 
ଵߣ ൌ 0.0045; 
ଶߣ ൌ 0.0045; 
ଷߣ ൌ 0.0003; 
 ൌ 0.6980; 

-516.4058 

5: E(3, λ1)      
& C(λ2, λ3, pc) 

ߙ ൌ 2.8182;  
ଵߙ ൌ 0.5693; 
ଵߣ ൌ 0.0068; 
ଶߣ ൌ 0.0068; 
ଷߣ ൌ 0.0004; 
 ൌ 0.7269; 

-515.4942 

6: E(4, λ1)      
& C(λ2, λ3, pc) 

ߙ ൌ 2.7463;  
ଵߙ ൌ 0.5747; 
ଵߣ ൌ 0.0097; 

-515.0856 
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ଶߣ ൌ 0.0097; 
ଷߣ ൌ 0.0004; 
 ൌ 0.7545; 

Table 2 - MLEs of Parameters for Different EC-based ALT 
Models with Different Numbers of Phases (k) 

Figure 4 illustrates the statistical fittings of the resulting 
EC-based ALT model for the three test stress levels. 
Compared to the corresponding empirical cdf’s, this model 
exhibits satisfactory prediction capability. Figure 5 shows the 
predicted reliability function, pdf and hazard rate of the lamp 
under the normal operating condition. The mean-time-to-
failure can be easily obtained as 2405.5 hours. 

 
Figure 4 - Statistical Fittings of the Resulting Model 

 
Figure 5 - Reliability Prediction using the Resulting Model 

(reliability function, pdf, hazard rate under 2V) 

5 CONCLUSIONS 

Although the applications of PH distributions have been 
studied in other areas, such as queueing systems and 
healthcare, they have not been used in modeling ALT. This 
paper introduces a generic method for modeling ALT data 
using EC distributions, which belong to an important subset of 
PH distributions. Without assuming other particular 
probability distributions for failure times, such as extreme 

value distributions (Gumbel, Weibull, and Fréchet 
distributions), lognormal distribution, and mixture of 
distributions, this method leads to an EC-based ALT model 
which can well represents the underlying failure time 
distribution that may be unknown and/or difficult to verify. 
Both moment-matching approach and MLE approach are 
developed for parameter estimation. The technical 
contribution of this paper is to demonstrate, for the first time, 
the potential of using PH distributions in developing ALT 
models. The numerical example demonstrates that the method 
indeed provides practitioners with a powerful tool for 
modeling ALT data.  
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